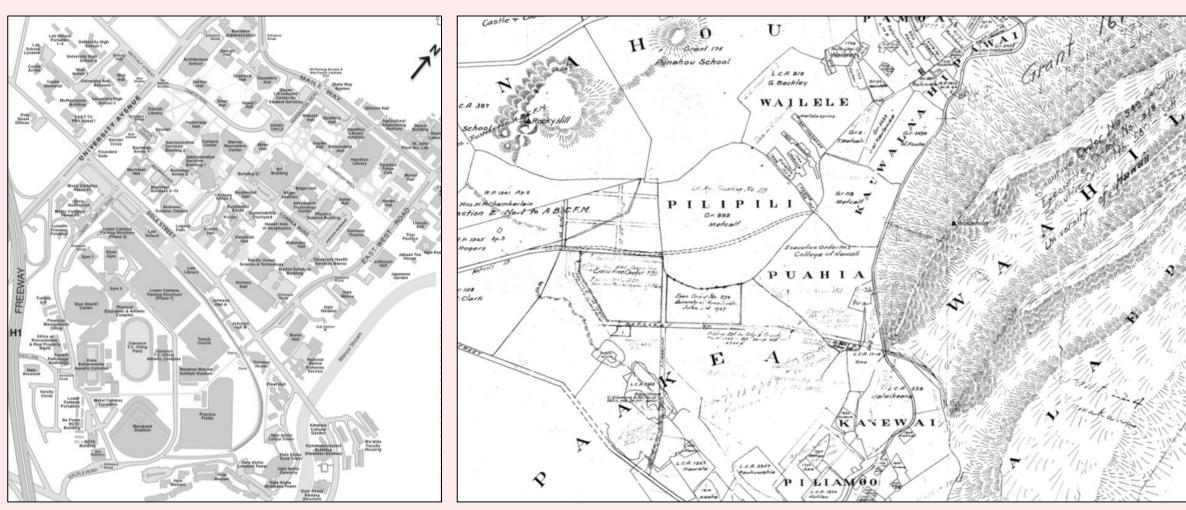


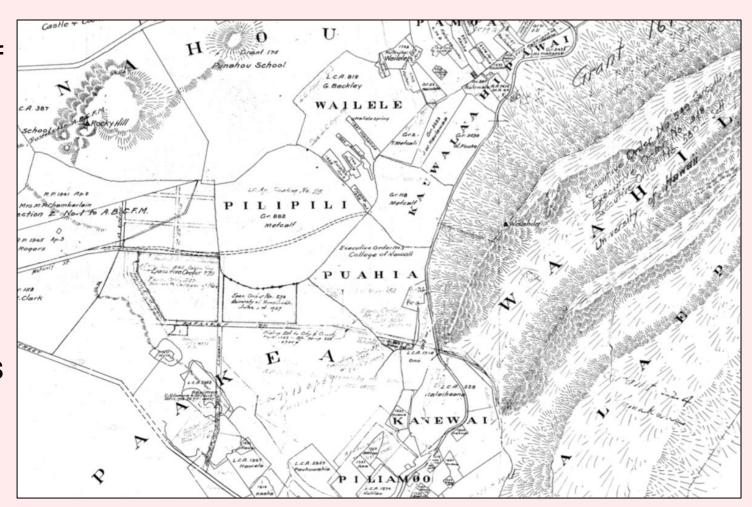
Before we start


Think of one question you have about teaching a science lab

Write it down

We'll come back to it

Acknowledging occupation of Indigenous land



Acknowledging occupation of Indigenous land

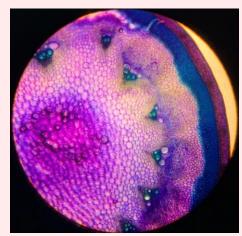
Conscious recognition of the land you occupy and its Indigenous roots

Attention to ongoing damage that settler colonialism causes Indigenous lands

Gratitude for the benefits we reap from the land that nourishes us

Objectives of this workshop

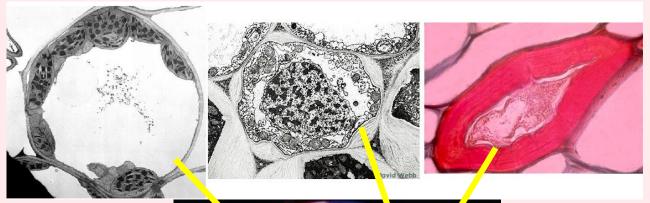
- 1. Discuss a better way to teach science, and how labs do that
- 2. Describe your role as a graduate student TA in UH science labs
- 3. Get practical advice from current TAs



What is the goal of a science lab?

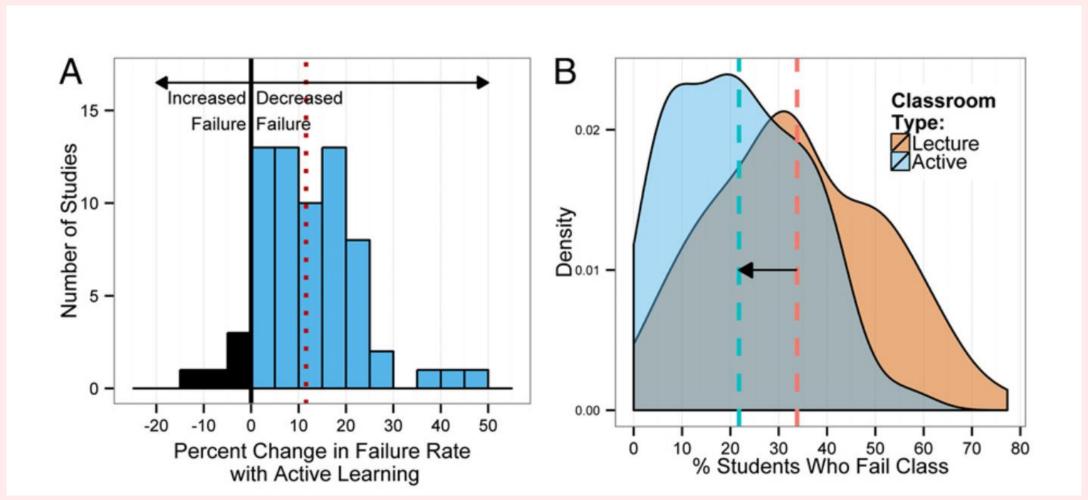
- Practice & mastery of technical skills
- Experience the scientific process
- Applying concepts from lecture in concrete manner

Science is taught ineffectively

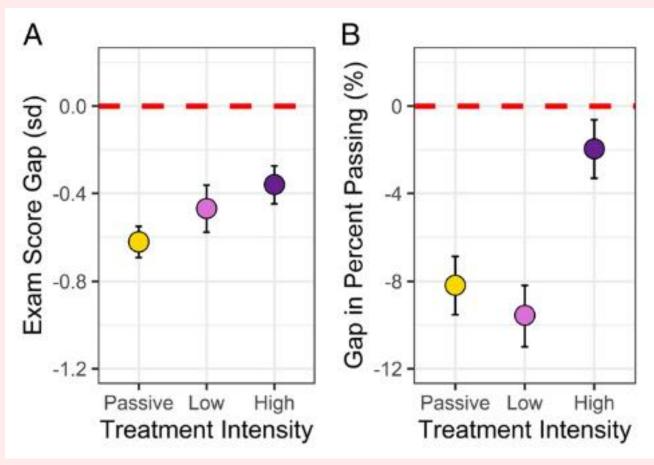


The 'stand and deliver' method is passive, and encourages memorization of facts rather than understanding and application of conceptual information in sciences.

Active learning is the best instructional tool


Any method of instruction that goes beyond just listening or reading

Science labs inherently active Use several AL tools to reinforce concepts


Teaches skills

Engages students in problem solving

AL reduces failure rate compared with passive

AL reduces performance gap for underrepresented groups

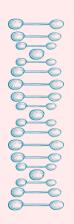
- Narrows the gap in performance: exams and passing grades
- Effectively reduces the impact of economic and educational disparities
- Improves retention of UR students

Passive learning example – scientific method

Teaching undergrads how to develop hypotheses and design experiments to test them, is common in nearly all science classrooms

A *hypothesis* is more than a random guess. It requires that you pay close attention to the observations you made and pull from previous knowledge to develop a probable explanation. In many cases, scientists formulate multiple hypotheses to cover many possible outcomes. Generally, scientists regularly use two types of hypotheses -- the null hypothesis and the alternate hypothesis. The *null hypothesis* states that there is no significant relationship between a variable being tested and the observed outcome. The *alternate hypothesis* states that there will be a significant relationship. Depending on the original observations or questions, there may be several alternate hypotheses.

Passive learning example – scientific method


Teaching undergrads how to develop hypotheses and design experiments to test them, is common in nearly all science classrooms

Scenario 1: You spill a large amount of sauce on your shirt and want to remove the stains. In your laundry room you have two stain removers -- StainAction and BriteWhite. You want to know which stain remover will do a better job.

Null Hypothesis (H_0) :

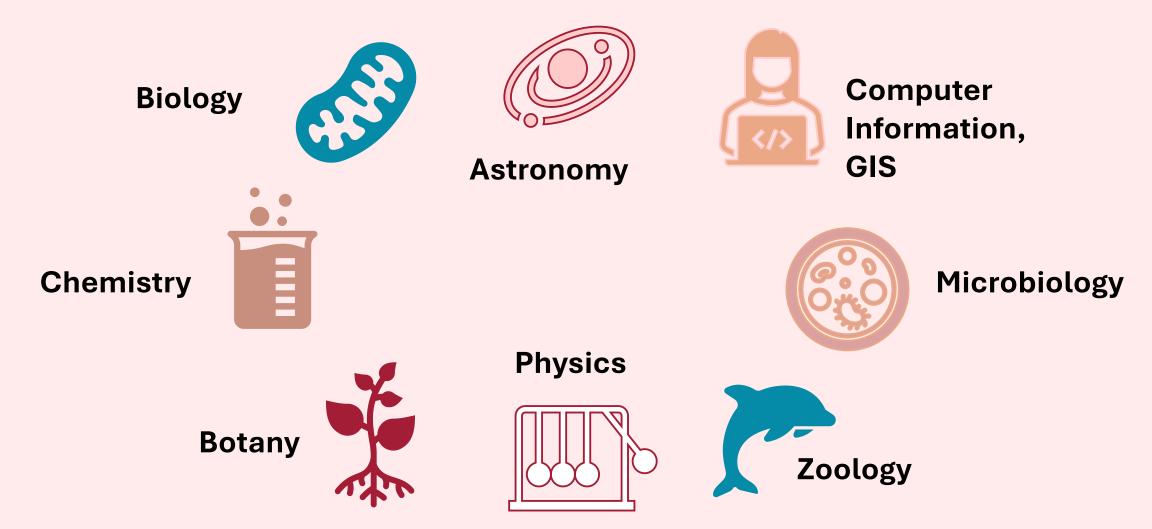
Alternate Hypothesis I:

Alternate Hypothesis II:

A better way – use AL tools (an example)

- Make an observation about the image
- 2. Ask a question about your observation
- 3. Form a hypothesis a plausible explanation based on strong rationale
- 4. Make a prediction based on hypothesis

Observation: There is a yellow substance coming out of the stem


Question: Why is the plant producing this yellow substance?

Hypothesis: Some plants produce latex, a secondary chemical in their tissues that help seal or protect injuries from damage or herbivory

Prediction: A plant that produces latex when damaged is less vulnerable to attack from herbivores, than one that does not produce latex.

Experiment: HOW WOULD YOU TEST THIS?

College of Natural Sciences has a lot of labs

Structure and schedules are similar across sciences

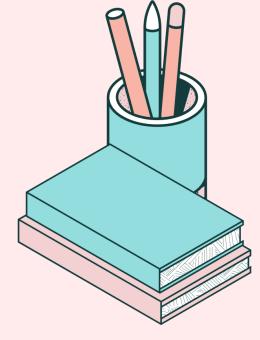
UHM chemistry lab

Structure and schedules are similar

- Labs held weekly
- 2 types of labs
 - 3 hours, relatively independent from lecture
 - 50 minutes, closely tied with lecture (3rd lecture meeting that week)
- TA : Student = **1:40** (average)
- Each TA does 1-2 sections, 20-25 students/section
- Instructions, demonstrations, then work in teams/partners

Duties vary slightly with the lab you teach

- Prepare for and lead lab activities
- Grade assignments
- Provide feedback and answer questions
- Give instructors progress on students



The science TA's week at UH Mānoa

Teaching	.6 hours
Lab cleanup or prep	1 hour
Prep (reading, slide edits, etc.)	4-5 hours
Meet with IOR	1 hour
Grading	5 hours
Office hours	1-2 hours
Misc. tasks (emails, etc.)	1 hour
TOTAL	. ~20 hours

Previous and current TAs give you advice

Topic: Potential bias in grading

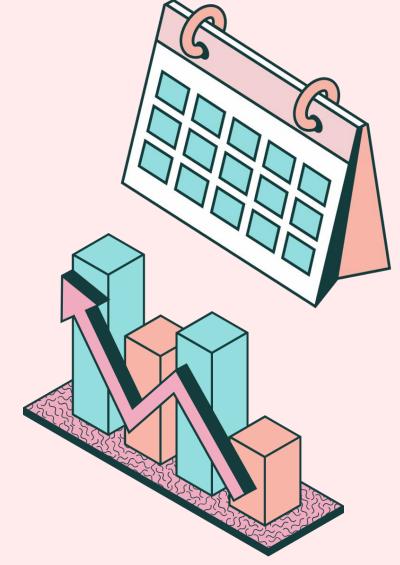
We all bring our unconscious bias into the classroom. For example, t's relatively easy to bias your grading: Students that are more vocal or attentive or that you are more familiar with get higher scores. Or your favorite topic gets more attention." – Ana

Mitigate confirmation bias by:

- Standardizing grading (rubrics)
 - Facilitating discussion when possible
- Check-in during lab activities
- Integrate culturally diverse and relevant examples
 - No judgement

Topic: Teaching outside your research expertise

"It is so important to familiarize yourself with the information first, by watching videos or reading articles. It can be superficial knowledge at first, so you can feel confident when talking about it.


"When you're not familiar with something, and get a hard question you can't answer, it's okay to say 'I'm not sure' or 'I don't know', and let the student know you can look into it. It shows that you care, and gives you the chance to learn something new." – Natalie

Topic: Time management

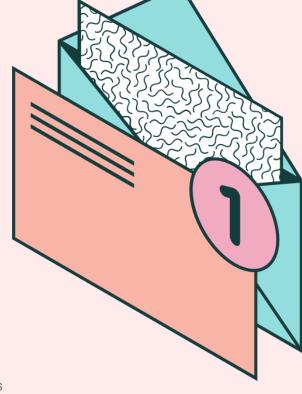
"TAs often give much more than what is required by our position, and that comes at a cost of our own education/research. I recommend tracking hours. Nobody will ever ask or give a sh*t, but it has helped me in two ways...

"I get a better idea of how to divide my time between grading, doing prep, answering emails. And, I can estimate my overall workload over a 2-week [pay] period because it fluctuates weekly." – Brandon

Topic: Preparing lab slides, materials

"You should review and customize and edit the slides you are provided to give before each lab. A lot of times those slides are all text, and that's not a good way to teach the material. Use figures and images, etc. to make the slides more engaging to keep the student's attention." – Amanda

Topic: Helping students do well



"It's as simple as answering any (reasonable) question they have by email, or even giving them guidance for an upcoming exam with a study guide or learning game during class. As a TA you can only do so much without overextending yourself, but making yourself available when you can, I think, means a lot." – Natalie

Back to that question you had

Did the workshop address your main question from

earlier?

Some parting thoughts

Check your awareness of inequity in science

NEWS&ANALYSIS

SCIENTIFIC COMMUNITY

U.S. Study Shows Unconscious Gender Bias in Academic Science

Most U.S. professors like to think that they are working hard to overcome the persis- also the first attempt to directly measure the

tent gender imba They certainly de

> Mol Biol Cell. 2021 Apr 1;32(7):507-510. doi: 10.1091/mbc.E20-09-0616.

We need to address ableism in science

Raven J Peterson 1

Affiliations + expand

PMID: 33793322 PMCID: PMC8101468 DOI: 10.1091/mbc.E20-09-0616

Unconscious Bias in the Classroom: How Cultural Stereotypes Affect Teachers' Assessment of Students' Math Abilities

encturk, Ph.D., Assistant Professor, Teacher Education, University of Southern

n.D., Associate Professor, Economics and Education Policy, New York University
 ki, Ph.D., Professor, Mathematics Education; Associate Dean, School of ersity Bloomington

sistant Professor, Educational Psychology, University of Texas at San Antonio

Some parting thoughts

Recognize that modern science is the consequence of exclusionary Western approaches to knowledge.

The decolonization movement is essential to overcoming these historical constraints for a just future in scientific theory and practice.

Decolonize your mind Practise ethical ecology in inclusive teams Know your histories A decolonizing ecology Decolonize Decolonize expertise access

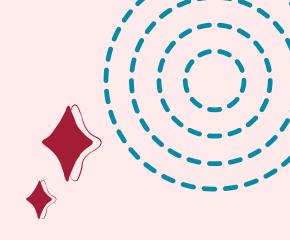
Trisos et al., 2021

Science decolonization resources

Decolonizing
Science Reading
List – Medium

<u>Decolonizing</u> <u>science toolkit –</u> Nature

Decolonize science


- time to end

another imperial

era - The

Conversation

You got this!

More resources here:

linktr.ee/anaifrs

Email me: flores29@hawaii.edu

